sigridjin_eth's profile picture. โœฏ @thisissigrid โ˜… โ˜„ ๎จ€ CS @UBC โ˜„ โ˜… Ultrathink Engineer @sionic_ai ๐ŸŸ digital nomad ๐Ÿ’ป

Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง

@sigridjin_eth

โœฏ @thisissigrid โ˜… โ˜„ ๎จ€ CS @UBC โ˜„ โ˜… Ultrathink Engineer @sionic_ai ๐ŸŸ digital nomad ๐Ÿ’ป

๊ณ ์ •๋œ ํŠธ์œ—

Read this tweet every day

What many people perceive as a focus problem is often a thoroughness problem. One route to improving focus is to *direct your efforts to thoroughness without the expectation of focus arriving first*. Put simply, thoroughness improves focus, no matter how slow the process may be.



Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

This is a side effect of Rust ๐Ÿ™‚

unfortunately, learning rust ruined almost every other language for me



Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

jackass leaking company IP at 2AM

remember: do not re-normalize MoE router scores post topk if k=1 weighing MoE outputs by the router scores is how the task loss can influence router params. when k=1 score=sum(score) so the update makes the scores=1 meaning it doesn't get gradients since its a constant!

kilian_maciej's tweet image. remember: do not re-normalize MoE router scores post topk if k=1

weighing MoE outputs by the router scores is how the task loss can influence router params. when k=1 
score=sum(score) so the update makes the scores=1 meaning it doesn't get gradients since its a constant!


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

Kafka๋Š” ํ›Œ๋ฅญํ•œ ๋„๊ตฌ์ง€๋งŒ PostgreSQL๋กœ๋„ ์–ด์ง€๊ฐ„ํ•œ ์ง€์ ๊นŒ์ง€ MQ๋ฅผ ์“ธ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ธ€. OpenAI์กฐ์ฐจ ์•„์ง๋„ ๋‹จ์ผ PostgreSQL ์“ฐ๊ธฐ ์ธ์Šคํ„ด์Šค๋กœ ์šด์˜ํ•˜๊ณ  ์žˆ๊ณ , Figma๋„ 2022๋…„๊นŒ์ง€ ์ƒค๋”ฉ ์—†๋Š” PostgreSQL๋กœ ์„œ๋น„์Šค๋ฅผ ์šด์˜ํ–ˆ๋‹ค. ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์ตœ์†Œํ•œ์˜ ์ธํ”„๋ผ์— ๊ต‰์žฅํžˆ ๋™์˜ํ•œ๋‹ค. topicpartition.io/blog/postgres-โ€ฆ


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

์–ด, ๋‚˜๋„ ์Šคํƒ€ํŠธ์—…๋“ค ์ปจ์„คํŒ… ๋ฐ ๊ธฐ์ˆ ์ƒ๋‹ดํ•˜๋ฉด์„œ ์นดํ”„์นด ์“ฐ์ง€ ๋ง๋ผ๋Š” ์ด์•ผ๊ธฐ ์ •๋ง ๋งŽ์ด ํ–ˆ๋Š”๋ฐ. ์•„๋‹ˆ ๊ทธ๋ƒฅ DB์— ๋“ค์–ด๊ฐ€์•ผ ํ•˜๋Š” ๋ฐ์ดํ„ฐ์ธ๋ฐ write ๋น„์šฉ ํฌ๋‹ค๊ณ  ์นดํ”„์นด ๊ฑฐ์ณ์„œ ๋„ฃ๋Š” ์‚ฌ๋žŒ์ด ์™œ ์ด๋ ‡๊ฒŒ ๋งŽ์€์ง€. ์ œ๋ฐœ ๊ทธ๋ƒฅ RDBMS๋กœ ๋‹ค ํ•˜์„ธ์š”. ๋„์ €ํžˆ ๋น„์šฉํšจ์œจ์ด ์•ˆ ๋‚˜์˜จ๋‹ค ์‹ถ์„ ๋•Œ ์นดํ”„์นด ๊ฐ€๋„ ๋Šฆ์ง€ ์•Š์•„์š”.

Kafka๋Š” ํ›Œ๋ฅญํ•œ ๋„๊ตฌ์ง€๋งŒ PostgreSQL๋กœ๋„ ์–ด์ง€๊ฐ„ํ•œ ์ง€์ ๊นŒ์ง€ MQ๋ฅผ ์“ธ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ธ€. OpenAI์กฐ์ฐจ ์•„์ง๋„ ๋‹จ์ผ PostgreSQL ์“ฐ๊ธฐ ์ธ์Šคํ„ด์Šค๋กœ ์šด์˜ํ•˜๊ณ  ์žˆ๊ณ , Figma๋„ 2022๋…„๊นŒ์ง€ ์ƒค๋”ฉ ์—†๋Š” PostgreSQL๋กœ ์„œ๋น„์Šค๋ฅผ ์šด์˜ํ–ˆ๋‹ค. ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์ตœ์†Œํ•œ์˜ ์ธํ”„๋ผ์— ๊ต‰์žฅํžˆ ๋™์˜ํ•œ๋‹ค. topicpartition.io/blog/postgres-โ€ฆ



Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

Come one Rust people, let's help the man be free! ๐Ÿฆ€

์ด ํŠธ์œ—์€ ๋” ์ด์ƒ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

Guido van Rossum builds a python package for RAG

At #PyBay25, @gvanrossum demo'd a Python package for "structured RAG". During ingestion, it uses LLM to extract structured data (entities/topics/verbs) and stores in standard DB, and then retrieves by structuring the user query as well. Try it out at: github.com/microsoft/typeโ€ฆ

pamelafox's tweet image. At #PyBay25, @gvanrossum  demo'd a Python package for "structured RAG".
During ingestion, it uses LLM to extract structured data (entities/topics/verbs) and stores in standard DB, and then retrieves by structuring the user query as well.
Try it out at:
github.com/microsoft/typeโ€ฆ


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

Household debt as share of GDP. ๐Ÿ‡จ๐Ÿ‡ฆ Canada: 103% ๐Ÿ‡ฌ๐Ÿ‡ง UK: 80% ๐Ÿ‡บ๐Ÿ‡ธ US: 73% ๐Ÿ‡ซ๐Ÿ‡ท France: 63% ๐Ÿ‡จ๐Ÿ‡ณ China: 62% ๐Ÿ‡ฉ๐Ÿ‡ช Germany: 52% ๐Ÿ‡ช๐Ÿ‡ธ Spain: 48% ๐Ÿ‡ฎ๐Ÿ‡น Italy: 39% ๐Ÿ‡ฎ๐Ÿ‡ณ India: 37% ๐Ÿ‡ฟ๐Ÿ‡ฆ South Africa: 34% ๐Ÿ‡ง๐Ÿ‡ท Brazil: 34% ๐Ÿ‡ธ๐Ÿ‡ฆ Saudi: 32% ๐Ÿ‡ท๐Ÿ‡บ Russia: 22% ๐Ÿ‡ฎ๐Ÿ‡ฉ Indonesia: 16% ๐Ÿ‡ฒ๐Ÿ‡ฝ Mexico: 16% ๐Ÿ‡น๐Ÿ‡ท Turkey: 11%


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

11์›”๋ถ€ํ„ฐ ์—ฐ๋ฝ์ฃผ์…จ๋˜ ๋ถ„๋“ค ๋งŒ๋‚˜์„œ ์ด์•ผ๊ธฐ ๋‚˜๋ˆ„๋ ค๊ณ  ์•ฝ์†์„ ์žก๊ณ  ์žˆ์–ด์š”. ์„ธ์ปจ๋น„ ๋งŒ๋“ค๋ฉด์„œ DevOps, SRE ํฌ์ง€์…˜์ด ์•„๋‹Œ, ํ”„๋Ÿฌ๋•ํŠธ ์—”์ง€๋‹ˆ์–ด์— ๋„์ „ํ•˜๊ณ  ์‹ถ๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ค์—ˆ์–ด์š”. ๋‚ด๊ฐ€ ์ง€๊ธˆ ์ผํ•˜๊ณ  ์žˆ๋Š” ํŒ€์ด ๋„ˆ๋ฌด ์ข‹์€ ํŒ€์ด๋ผ๊ณ  ์ƒ๊ฐ๋˜๋Š” ๋ถ„ ๊ณ„์‹œ๋ฉด ์•Œ๋ ค์ฃผ์„ธ์š”! github.com/asbubam/resume


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

Kimi K2 is up to 5x faster and 50% more accurate ๏ผš๏ผ‰

We're benchmarking a bunch of models for one of our internal agents. ๐Ÿคฏ Kimi K2 is up to 5x faster and 50% more accurate than frontier proprietary modelsโ€ฆ And it took very little work to switch out the models via @aisdk / @vercel ai gateway ๐Ÿ˜ฌ (served by @groqinc)

rauchg's tweet image. We're benchmarking a bunch of models for one of our internal agents. ๐Ÿคฏ Kimi K2 is up to 5x faster and 50% more accurate than frontier proprietary modelsโ€ฆ

And it took very little work to switch out the models via @aisdk / @vercel ai gateway ๐Ÿ˜ฌ (served by @groqinc)


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

Why do frontier models still fail at PDF parsing in 2025? Evan Vogelbaum, @hu_yifei and @AlvinRyanputra from @reductoai showed their autoregressive layout model: outputs hundreds of boxes with zero hallucinations. Traditional OCR for simple text. Custom VLMs for handwrittenโ€ฆ


Sigrid Jin | Jin Hyung Park ๐Ÿช„ ๐Ÿ‘ง ๋‹˜์ด ์žฌ๊ฒŒ์‹œํ•จ

์ค‘๊ตญ ๋ฐ”์ด๋‘์—์„œ ๊ธฐ์กด OCR ๋ชจ๋ธ ๋‹ค ์”น์–ด๋จน๋Š”๊ฑฐ๋ฅผ ์˜คํ”ˆ์†Œ์Šค๋กœ ๊ณต๊ฐœํ•ด๋ฒ„๋ ธ๋‹ค... ๊ธฐ์กด์— OCR ๋ชจ๋ธ ์‚ฌ์„œ ์“ฐ๋ ค๊ณ  ์ƒ๊ฐ์ค‘์ด๋˜ ๋ถ„๋„ ์ด๊ฑฐ ๋ณด์ž๋งˆ์ž ๊ตฌ๋งค ๊ณ„ํš์„ ์ทจ์†Œํ•ด๋ฒ„๋ฆฌ์‹ฌ ใ„ทใ„ท... huggingface.co/PaddlePaddle/Pโ€ฆ


Loading...

Something went wrong.


Something went wrong.