#multimodalretrieval search results
Can we prompt over videos as well? #NLQA4Videos #VideoEditingviaPrompts #MultimodalRetrieval #MultiModalEditing
Our new native image generation and editing is state-of-the-art, and ranked #1 in the world. And we're rolling it out for free to everyone today. You’ve got the tools. Now go bananas. Ideas & inspiration in the 🧵below.
RAG による言語モデルの強化: ベスト プラクティスとベンチマーク - MarkTechPost #RAGchallenges #OptimizingRAG #MultimodalRetrieval #EnhancingLLM prompthub.info/24014/
Learn how to build real-time "text to image" multimodal retrieval using DashVector and ModelScope's Chinese CLIP model. Embedding images and querying text to find similar images. #MultimodalRetrieval #DashVector #ModelScope #CLIP ift.tt/RBlyENm
dev.to
DashVector + ModelScope 玩转多模态检索
本教程演示如何使用向量检索服务(DashVector),结合ModelScope上的中文CLIP多模态检索模型,构建实时的"文本搜图片"的多模态检索能力。作为示例,我们采用多模态牧歌数据集作为图片语料库...
Something went wrong.
Something went wrong.
United States Trends
- 1. Michigan 139K posts
- 2. Ohio State 59K posts
- 3. Bryce Underwood 4,026 posts
- 4. Ryan Day 8,395 posts
- 5. #GoBucks 12.4K posts
- 6. Stoops 5,955 posts
- 7. Sherrone Moore 3,308 posts
- 8. Mateer 1,204 posts
- 9. Julian Sayin 6,081 posts
- 10. Clemson 8,677 posts
- 11. #TheGame 4,642 posts
- 12. #GoBlue 9,737 posts
- 13. Fortnite 229K posts
- 14. Tim Banks N/A
- 15. Brutus 18.4K posts
- 16. Venezuela 433K posts
- 17. Beamer 2,008 posts
- 18. Van Buren N/A
- 19. Demond N/A
- 20. Kentucky 21.8K posts