#statistics_applications search results
The Wisdom of Polarized Crowds arxiv.org/pdf/1712.06414… (Popularity:28.0) #Natural_language_processing #Statistics_Applications #Digital_Libraries #Social_and_Information_Networks #Computers_and_Society
The Wisdom of Polarized Crowds arxiv.org/pdf/1712.06414… (Popularity:28.0) #Natural_language_processing #Statistics_Applications #Digital_Libraries #Social_and_Information_Networks #Computers_and_Society
The Wisdom of Polarized Crowds arxiv.org/pdf/1712.06414… (Popularity:28.0) #Natural_language_processing #Statistics_Applications #Digital_Libraries #Social_and_Information_Networks #Computers_and_Society
Touchscreen Voting Machines Cause Long Lines and Disenfranch arxiv.org/pdf/0810.5577.… (Popularity:18.1) #Statistics_Applications #Statistics_and_Computation
Difference-in-Differences with Multiple Time Periods and an arxiv.org/pdf/1803.09015… (Popularity:12.0) #Statistics_Applications #Statistics_Theory #Statistics_Theory
A Bayes Factor for Replications of ANOVA Results arxiv.org/pdf/1611.09341… (Popularity:22.1) #Statistics_Applications
A hierarchical model of non-homogeneous Poisson processes fo arxiv.org/pdf/1802.01987… (Popularity:20.0) #Social_and_Information_Networks #Statistics_Applications #Statistics_and_Computation
A hierarchical model of non-homogeneous Poisson processes fo arxiv.org/pdf/1802.01987… (Popularity:20.0) #Social_and_Information_Networks #Statistics_Applications #Statistics_and_Computation
Actions Speak Louder Than Goals: Valuing Player Actions in S arxiv.org/pdf/1802.07127… (Popularity:15.8) #Statistics_Applications #Statistics_-_Machine_Learning
What did the 2016 Brexit referendum data really say? arxiv.org/pdf/1608.06552… (Popularity:26.5) #Statistics_Applications
Horseshoes in multidimensional scaling and local kernel meth arxiv.org/pdf/0811.1477.… (Popularity:24.0) #Applied_computing #Statistics_Applications
The false positive risk: a proposal concerning what to do ab arxiv.org/pdf/1802.04888… (Popularity:45.0) #Statistics_Applications
BART: Bayesian additive regression trees arxiv.org/pdf/0806.3286.… (Popularity:30.0) #Applied_computing #Statistics_Applications #Statistics_Methodology #Statistics_-_Machine_Learning
Automatic Selection of t-SNE Perplexity arxiv.org/pdf/1708.03229… (Popularity:42.0) #Artificial_Intelligence #Machine_Learning #Statistics_Applications #Statistics_-_Machine_Learning
Automatic Selection of t-SNE Perplexity arxiv.org/pdf/1708.03229… (Popularity:42.0) #Artificial_Intelligence #Machine_Learning #Statistics_Applications #Statistics_-_Machine_Learning
Poverty Mapping Using Convolutional Neural Networks Trained arxiv.org/pdf/1711.06323… (Popularity:35.0) #Computers_and_Society #Statistics_-_Machine_Learning #Statistics_Applications
Fair prediction with disparate impact: A study of bias in re arxiv.org/pdf/1610.07524… (Popularity:13.6) #Computers_and_Society #Statistics_Applications #Statistics_-_Machine_Learning
Automatic Selection of t-SNE Perplexity arxiv.org/pdf/1708.03229… (Popularity:42.0) #Artificial_Intelligence #Machine_Learning #Statistics_Applications #Statistics_-_Machine_Learning
Causal interpretation rules for encoding and decoding models arxiv.org/pdf/1511.04780… (Popularity:17.6) #Machine_Learning #Statistics_-_Machine_Learning #Statistics_Applications #Neurons_and_Cognition
Poverty Mapping Using Convolutional Neural Networks Trained arxiv.org/pdf/1711.06323… (Popularity:35.0) #Computers_and_Society #Statistics_-_Machine_Learning #Statistics_Applications
Horseshoes in multidimensional scaling and local kernel meth arxiv.org/pdf/0811.1477.… (Popularity:24.0) #Applied_computing #Statistics_Applications
The impossibility of "fairness": a generalized impossibility arxiv.org/pdf/1707.01195… (Popularity:26.2) #Artificial_Intelligence #Statistics_Applications #Statistics_-_Machine_Learning
The impossibility of "fairness": a generalized impossibility arxiv.org/pdf/1707.01195… (Popularity:26.2) #Artificial_Intelligence #Statistics_Applications #Statistics_-_Machine_Learning
The impossibility of "fairness": a generalized impossibility arxiv.org/pdf/1707.01195… (Popularity:26.2) #Artificial_Intelligence #Statistics_Applications #Statistics_-_Machine_Learning
What did the 2016 Brexit referendum data really say? arxiv.org/pdf/1608.06552… (Popularity:26.5) #Statistics_Applications
Actions Speak Louder Than Goals: Valuing Player Actions in S arxiv.org/pdf/1802.07127… (Popularity:15.8) #Statistics_Applications #Statistics_-_Machine_Learning
Automatic Selection of t-SNE Perplexity arxiv.org/pdf/1708.03229… (Popularity:42.0) #Artificial_Intelligence #Machine_Learning #Statistics_Applications #Statistics_-_Machine_Learning
Automatic Selection of t-SNE Perplexity arxiv.org/pdf/1708.03229… (Popularity:42.0) #Artificial_Intelligence #Machine_Learning #Statistics_Applications #Statistics_-_Machine_Learning
Automatic Selection of t-SNE Perplexity arxiv.org/pdf/1708.03229… (Popularity:42.0) #Artificial_Intelligence #Machine_Learning #Statistics_Applications #Statistics_-_Machine_Learning
Touchscreen Voting Machines Cause Long Lines and Disenfranch arxiv.org/pdf/0810.5577.… (Popularity:18.1) #Statistics_Applications #Statistics_and_Computation
BART: Bayesian additive regression trees arxiv.org/pdf/0806.3286.… (Popularity:30.0) #Applied_computing #Statistics_Applications #Statistics_Methodology #Statistics_-_Machine_Learning
Forecasting Across Time Series Databases using Long Short-Te arxiv.org/pdf/1710.03222… (Popularity:34.3) #Machine_Learning #Databases #Statistics_Applications #Statistics_-_Machine_Learning
Forecasting Across Time Series Databases using Long Short-Te arxiv.org/pdf/1710.03222… (Popularity:34.3) #Machine_Learning #Databases #Statistics_Applications #Statistics_-_Machine_Learning
Forecasting Across Time Series Databases using Long Short-Te arxiv.org/pdf/1710.03222… (Popularity:34.3) #Machine_Learning #Databases #Statistics_Applications #Statistics_-_Machine_Learning
Fair prediction with disparate impact: A study of bias in re arxiv.org/pdf/1610.07524… (Popularity:13.6) #Computers_and_Society #Statistics_Applications #Statistics_-_Machine_Learning
Poverty Mapping Using Convolutional Neural Networks Trained arxiv.org/pdf/1711.06323… (Popularity:35.5) #Computers_and_Society #Statistics_-_Machine_Learning #Statistics_Applications
Poverty Mapping Using Convolutional Neural Networks Trained arxiv.org/pdf/1711.06323… (Popularity:35.5) #Computers_and_Society #Statistics_-_Machine_Learning #Statistics_Applications
Poverty Mapping Using Convolutional Neural Networks Trained arxiv.org/pdf/1711.06323… (Popularity:35.0) #Computers_and_Society #Statistics_-_Machine_Learning #Statistics_Applications
Poverty Mapping Using Convolutional Neural Networks Trained arxiv.org/pdf/1711.06323… (Popularity:35.0) #Computers_and_Society #Statistics_-_Machine_Learning #Statistics_Applications
Causal interpretation rules for encoding and decoding models arxiv.org/pdf/1511.04780… (Popularity:17.6) #Machine_Learning #Statistics_-_Machine_Learning #Statistics_Applications #Neurons_and_Cognition
Something went wrong.
Something went wrong.
United States Trends
- 1. #DWTS 46.7K posts
- 2. Northern Lights 26.3K posts
- 3. #Aurora 5,375 posts
- 4. Justin Edwards 1,756 posts
- 5. Louisville 15.3K posts
- 6. Andy 59.6K posts
- 7. Lowe 12.1K posts
- 8. #RHOSLC 5,557 posts
- 9. #OlandriaxHarpersBazaar 2,999 posts
- 10. Elaine 42.3K posts
- 11. Oweh 1,783 posts
- 12. Kentucky 24.3K posts
- 13. Celtics 11.6K posts
- 14. JT Toppin N/A
- 15. Robert 98.5K posts
- 16. #WWENXT 15.5K posts
- 17. Dylan 30.5K posts
- 18. Whitney 8,644 posts
- 19. Jordan Walsh N/A
- 20. Kam Williams N/A