#inferenceoptimization 搜尋結果
Talk: From Human Agents to GPU-Powered GenAI – A Data-Driven Transformation in Customer Service 🔗 hubs.li/Q03LTv9v0 Register Now: hubs.li/Q03LTrqr0 #GenAIinSupport #CustomerServiceAI #InferenceOptimization #EnterpriseAI #AppliedAISummit
1/3 Learn in this blog article the key techniques like pruning, model quantization, and hardware acceleration that are enhancing efficiency. #MultimodalAI #LLMs #InferenceOptimization #AnkursNewsletter
Supercharge your AI with lightning-fast inference! 🚀 Post-training quantization techniques like AWQ and GPTQ trim down your models without sacrificing smarts—boosting speed and slashing compute costs. Ready to optimize your LLMs for real-world performance? #InferenceOptimization…
Stanford Researchers Explore Inference Compute Scaling in Language Models: Achieving Enhanced Performance and Cost Efficiency through Repeated Sampling itinai.com/stanford-resea… #AIAvancements #InferenceOptimization #RepeatedSampling #AIApplications #EvolveWithAI #ai #news #llm…
3/3 Explore our comprehensive guide on inference optimization strategies for LLMs here: buff.ly/3R7QFqK 🔁 Spread this thread with your audience by Retweeting this tweet #MultimodalAI #LLMs #InferenceOptimization #AnkursNewsletter
What we’re building 🏗️, shipping 🚢 and sharing 🚀 tomorrow: Inference Optimization with GPTQ Learn how GPTQ’s “one-shot weight quantization” compares to other leading techniques like AWQ Start optimizing: bit.ly/InferenceGPTQ?… #LLMs #GPTQ #InferenceOptimization
L40S GPUs optimize Llama 3 7B inference at $0.00037/request. Achieve extreme throughput for small LLMs. Benchmark your model. get.runpod.io/oyksj6fqn1b4 #LLM #Llama3 #InferenceOptimization #CostPerRequest
Check out how TensorRT-LLM Speculative Decoding can boost inference throughput by up to 3.6x! #TensorRT #InferenceOptimization #AI #NVIDIA #LLM #DeepLearning 🚀🔥 developer.nvidia.com/blog/tensorrt-…
developer.nvidia.com
TensorRT-LLM Speculative Decoding Boosts Inference Throughput by up to 3.6x | NVIDIA Technical Blog
NVIDIA TensorRT-LLM support for speculative decoding now provides over 3x the speedup in total token throughput. TensorRT-LLM is an open-source library that provides blazing-fast inference support...
DeepMind と UC Berkeley が LLM 推論時間コンピューティングを最大限に活用する方法を紹介 | VentureBeat #AIcoverage #InferenceOptimization #TestTimeCompute #LLMperformance prompthub.info/40031/
Capital is also chasing compute arbitrage. Startups using: – Smart model quantization – Faster inference on CPUs – Sovereign training infra Own the stack, own the scale. #computeedge #inferenceoptimization #quantization
Inference is where great AI products either scale—or burn out. 2025’s best AI infra teams aren’t just using better models… They’re running smarter pipelines. This thread: how quantization, batching & caching supercharge LLM apps. #LLMOps #InferenceOptimization #AIInfra
Model Layer = Swappable Core GPT-4, Claude, Gemini, Mixtral—pick your poison. Top teams don’t pick one. They route by: → Task → Latency → Cost → Accuracy Models are pipes. Routing is strategy. #LLMs #ModelOps #InferenceOptimization
Excited to read about the Large Transformer Model Inference Optimization by @lilianweng! This article provides valuable insights on improving Transformers. Don't miss it! 👉🔍 #InferenceOptimization Check out the article here: lilianweng.github.io/posts/2023-01-…
Talk: From Human Agents to GPU-Powered GenAI – A Data-Driven Transformation in Customer Service 🔗 hubs.li/Q03LTv9v0 Register Now: hubs.li/Q03LTrqr0 #GenAIinSupport #CustomerServiceAI #InferenceOptimization #EnterpriseAI #AppliedAISummit
L40S GPUs optimize Llama 3 7B inference at $0.00037/request. Achieve extreme throughput for small LLMs. Benchmark your model. get.runpod.io/oyksj6fqn1b4 #LLM #Llama3 #InferenceOptimization #CostPerRequest
Speed is the Surprise Benefit Quantized models = smaller memory Local batching = faster inference No internet = instant UX Local Mistral can outperform GPT-4 on simple tasks—because latency wins #fastLLMs #inferenceoptimization
Inference is where great AI products either scale—or burn out. 2025’s best AI infra teams aren’t just using better models… They’re running smarter pipelines. This thread: how quantization, batching & caching supercharge LLM apps. #LLMOps #InferenceOptimization #AIInfra
Model Layer = Swappable Core GPT-4, Claude, Gemini, Mixtral—pick your poison. Top teams don’t pick one. They route by: → Task → Latency → Cost → Accuracy Models are pipes. Routing is strategy. #LLMs #ModelOps #InferenceOptimization
Capital is also chasing compute arbitrage. Startups using: – Smart model quantization – Faster inference on CPUs – Sovereign training infra Own the stack, own the scale. #computeedge #inferenceoptimization #quantization
Supercharge your AI with lightning-fast inference! 🚀 Post-training quantization techniques like AWQ and GPTQ trim down your models without sacrificing smarts—boosting speed and slashing compute costs. Ready to optimize your LLMs for real-world performance? #InferenceOptimization…
Check out how TensorRT-LLM Speculative Decoding can boost inference throughput by up to 3.6x! #TensorRT #InferenceOptimization #AI #NVIDIA #LLM #DeepLearning 🚀🔥 developer.nvidia.com/blog/tensorrt-…
developer.nvidia.com
TensorRT-LLM Speculative Decoding Boosts Inference Throughput by up to 3.6x | NVIDIA Technical Blog
NVIDIA TensorRT-LLM support for speculative decoding now provides over 3x the speedup in total token throughput. TensorRT-LLM is an open-source library that provides blazing-fast inference support...
What we’re building 🏗️, shipping 🚢 and sharing 🚀 tomorrow: Inference Optimization with GPTQ Learn how GPTQ’s “one-shot weight quantization” compares to other leading techniques like AWQ Start optimizing: bit.ly/InferenceGPTQ?… #LLMs #GPTQ #InferenceOptimization
Ten Effective Strategies to Lower Large Language Model (LLM) Inference Costs itinai.com/ten-effective-… #AIcosts #InferenceOptimization #ModelEfficiency #AIperformance #AIstrategy #ai #news #llm #ml #research #ainews #innovation #artificialintelligence #machinelearning #technolo…
Stanford Researchers Explore Inference Compute Scaling in Language Models: Achieving Enhanced Performance and Cost Efficiency through Repeated Sampling itinai.com/stanford-resea… #AIAvancements #InferenceOptimization #RepeatedSampling #AIApplications #EvolveWithAI #ai #news #llm…
DeepMind と UC Berkeley が LLM 推論時間コンピューティングを最大限に活用する方法を紹介 | VentureBeat #AIcoverage #InferenceOptimization #TestTimeCompute #LLMperformance prompthub.info/40031/
1/3 Learn in this blog article the key techniques like pruning, model quantization, and hardware acceleration that are enhancing efficiency. #MultimodalAI #LLMs #InferenceOptimization #AnkursNewsletter
Talk: From Human Agents to GPU-Powered GenAI – A Data-Driven Transformation in Customer Service 🔗 hubs.li/Q03LTv9v0 Register Now: hubs.li/Q03LTrqr0 #GenAIinSupport #CustomerServiceAI #InferenceOptimization #EnterpriseAI #AppliedAISummit
Stanford Researchers Explore Inference Compute Scaling in Language Models: Achieving Enhanced Performance and Cost Efficiency through Repeated Sampling itinai.com/stanford-resea… #AIAvancements #InferenceOptimization #RepeatedSampling #AIApplications #EvolveWithAI #ai #news #llm…
What we’re building 🏗️, shipping 🚢 and sharing 🚀 tomorrow: Inference Optimization with GPTQ Learn how GPTQ’s “one-shot weight quantization” compares to other leading techniques like AWQ Start optimizing: bit.ly/InferenceGPTQ?… #LLMs #GPTQ #InferenceOptimization
Inference is where great AI products either scale—or burn out. 2025’s best AI infra teams aren’t just using better models… They’re running smarter pipelines. This thread: how quantization, batching & caching supercharge LLM apps. #LLMOps #InferenceOptimization #AIInfra
Something went wrong.
Something went wrong.
United States Trends
- 1. #ALLOCATION 236K posts
- 2. #JUPITER 238K posts
- 3. The BIGGЕST 432K posts
- 4. #GivingTuesday 9,834 posts
- 5. #GMMTVxTPDA2025 658K posts
- 6. Good Tuesday 30.2K posts
- 7. rUSD N/A
- 8. Kanata 24.9K posts
- 9. #AreYouSure2 55.3K posts
- 10. Michael Dell N/A
- 11. JOSSGAWIN AT TPDA2025 96.7K posts
- 12. JIMMYSEA TPDA AWARD 2025 69.7K posts
- 13. Costco 30.4K posts
- 14. Dart 39.6K posts
- 15. Snow Day 7,663 posts
- 16. Penny 22.7K posts
- 17. Pentagon 57.7K posts
- 18. Hololive 16K posts
- 19. FedEx 3,975 posts
- 20. Elliss 6,231 posts