#semanticentropy 搜尋結果
evaluation of how #semanticEntropy (how big is the cluster of responses to the same query that entail each other according to LLM) is much more accurate than #perplexity. even more important is that SE is much better for reasoning. #AI #womenshealth arxiv.org/pdf/2503.00269
“Curious how we dare compose the fate of the cosmos from the dust of our own frameworks— as if disorder were not a mirror of language, but a law of nature.” #AnthropicLimits #ProjectionIsNotLaw #SemanticEntropy #OrderIsInterpretation #DisorderIsContextual
I just published The Illusions of Intelligence: Detecting Hallucinations in Large Language Models link.medium.com/2wWOFnhYxLb #SemanticEntropy #AIHallucinations #AITrustworthiness
チャットボットは他のチャットボットの嘘を見破ることができるか? | Scientific American #AIhallucinations #confabulations #semanticentropy #antihallucinationmethods prompthub.info/27212/
研究者は、複数の意味を持つ単語から生じる AI 幻覚バグを撲滅したいと考えている | Tom's Hardware #AIhallucinations #detectingconfabulations #semanticentropy #trustworthyAI prompthub.info/19484/
Detecting AI Hallucinations using Semantic Entropy build5nines.com/detecting-ai-h… #llm #aihallucination #semanticentropy #ai #gpt #openai #copilot #agenticai #aiagent #rag #retrievalautmentedgeneration #genai #generativeai
LLM の信頼性の向上: セマンティック エントロピーによる作話の検出 - MarkTechPost #LLMreliability #confabulations #semanticentropy #AIresearch prompthub.info/19141/
New @Nature study introduces "#semanticentropy" to detect #AIhallucinations. By analysing uncertainty in AI-generated facts, researchers achieved 78-81% accuracy in spotting made-up info. Could revolutionise AI trustworthiness. #MachineLearning nature.com/articles/s4158…
「幻覚的な」生成モデルに関する大規模な研究により、人工知能の信頼性が向上 | オックスフォード大学 #AIreliability #semanticentropy #LLMerrors #detecthallucinations prompthub.info/18256/
evaluation of how #semanticEntropy (how big is the cluster of responses to the same query that entail each other according to LLM) is much more accurate than #perplexity. even more important is that SE is much better for reasoning. #AI #womenshealth arxiv.org/pdf/2503.00269
Something went wrong.
Something went wrong.
United States Trends
- 1. Panthers 45.8K posts
- 2. Rams 30.7K posts
- 3. Colts 31.8K posts
- 4. Ole Miss 97K posts
- 5. Vikings 18.2K posts
- 6. Falcons 13.2K posts
- 7. Jets 37.8K posts
- 8. Browns 43.3K posts
- 9. Texans 23.5K posts
- 10. #KeepPounding 8,704 posts
- 11. Stafford 19.3K posts
- 12. Brosmer 5,870 posts
- 13. Bryce Young 11K posts
- 14. Herbert 6,595 posts
- 15. Seahawks 15.9K posts
- 16. #Skol 2,074 posts
- 17. Dallas Turner N/A
- 18. 49ers 23.8K posts
- 19. Lane Kiffin 122K posts
- 20. #BillsMafia 3,517 posts