#softwaredefectprediction 搜尋結果
RT Sensors_MDPI #highlycitedpaper Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review mdpi.com/1424-8220/22/7… #SoftwareDefectPrediction #MobileApplications #MachineLearning

📢 Read our Paper 📚 Improving Software Defect Prediction in Noisy Imbalanced Datasets 🔗 mdpi.com/2076-3417/13/1… 👨🔬 by Haoxiang Shi et al. #softwaredefectprediction #classimbalance @Beihang1952

#highlycitedpaper Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review mdpi.com/1424-8220/22/7… #SoftwareDefectPrediction #MobileApplications #MachineLearning

アップグレードされた魚の移動最適化アルゴリズムによって最適化された残差/シャッフルネットワークに基づくソフトウェア欠陥予測 | Scientific Reports #SoftwareDefectPrediction #DeepLearning #OptimizationAlgorithms #SoftwareQuality prompthub.info/98483/
Interested in business applications of #SoftwareDefectPrediction? Voilà 👉🏼 “Machine learning in software defect prediction: A business-driven systematic mapping study” by Szymon Stradowski @LechMadeyski @ISTJrnal doi.org/10.1016/j.infs… Stay tuned to what we are doing in @nokia
Back home from #ASE2023 CORE A* conference. Thank you @f_sarro & @christianbird for the invitation to @ASE_conf PC (occasion to review 🔥 papers)! Interested in Bridging the Gap between Academia & Industry in #MachineLearning #SoftwareDefectPrediction? 👉🏼 conf.researchr.org/details/ase-20…
📝 New article @ISTJrnal "Machine Learning in Software Defect Prediction: A Business-Driven Systematic Mapping Study" by Szymon Stradowski & @LechMadeyski #SystematicMappingStudy #SoftwareDefectPrediction #CostReduction #ML 👉 Get your copy at authors.elsevier.com/a/1gF6h3O8rCcj…
📢 Read our Paper 📚 Improving Software Defect Prediction in Noisy Imbalanced Datasets 🔗 mdpi.com/2076-3417/13/1… 👨🔬 by Haoxiang Shi et al. #softwaredefectprediction #classimbalance @Beihang1952

アップグレードされた魚の移動最適化アルゴリズムによって最適化された残差/シャッフルネットワークに基づくソフトウェア欠陥予測 | Scientific Reports #SoftwareDefectPrediction #DeepLearning #OptimizationAlgorithms #SoftwareQuality prompthub.info/98483/
Back home from #ASE2023 CORE A* conference. Thank you @f_sarro & @christianbird for the invitation to @ASE_conf PC (occasion to review 🔥 papers)! Interested in Bridging the Gap between Academia & Industry in #MachineLearning #SoftwareDefectPrediction? 👉🏼 conf.researchr.org/details/ase-20…
#highlycitedpaper Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review mdpi.com/1424-8220/22/7… #SoftwareDefectPrediction #MobileApplications #MachineLearning

We reviewed industrial applications of #SoftwareDefectPrediction using #MachineLearning in our business-driven #SystematicReview and are working to introduce an #agile version @nokia 👉Get your #OpenAccess copy @ISTJrnal doi.org/10.1016/j.infs… & stay tuned! #SoftwareEngineering
📝 New article @ISTJrnal "Machine Learning in Software Defect Prediction: A Business-Driven Systematic Mapping Study" by Szymon Stradowski & @LechMadeyski #SystematicMappingStudy #SoftwareDefectPrediction #CostReduction #ML 👉 Get your copy at authors.elsevier.com/a/1gF6h3O8rCcj…
Interested in business applications of #SoftwareDefectPrediction? Voilà 👉🏼 “Machine learning in software defect prediction: A business-driven systematic mapping study” by Szymon Stradowski @LechMadeyski @ISTJrnal doi.org/10.1016/j.infs… Stay tuned to what we are doing in @nokia
📢 Read our Paper 📚 Improving Software Defect Prediction in Noisy Imbalanced Datasets 🔗 mdpi.com/2076-3417/13/1… 👨🔬 by Haoxiang Shi et al. #softwaredefectprediction #classimbalance @Beihang1952

#highlycitedpaper Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review mdpi.com/1424-8220/22/7… #SoftwareDefectPrediction #MobileApplications #MachineLearning

RT Sensors_MDPI #highlycitedpaper Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review mdpi.com/1424-8220/22/7… #SoftwareDefectPrediction #MobileApplications #MachineLearning

Something went wrong.
Something went wrong.
United States Trends
- 1. Vandy 11.1K posts
- 2. Brian Kelly 5,791 posts
- 3. No Kings 927K posts
- 4. Carnell Tate 2,679 posts
- 5. Diego Pavia 3,536 posts
- 6. Vanderbilt 8,792 posts
- 7. Beamer 2,764 posts
- 8. Clark Lea N/A
- 9. Dork Cult Protest Day 42.3K posts
- 10. Tony Vitello 2,465 posts
- 11. South Carolina 10.9K posts
- 12. Nuss 3,328 posts
- 13. Shula 2,441 posts
- 14. #GoBlue 2,572 posts
- 15. Joe Sloan 1,064 posts
- 16. Duke 64.8K posts
- 17. Marchand 2,388 posts
- 18. Tulane 1,937 posts
- 19. Sellers 9,937 posts
- 20. Georgia Tech 4,928 posts