dchiji_en's profile picture. Researcher at NTT / Interests: neural networks, loss landscape, learning theory

Daiki Chijiwa

@dchiji_en

Researcher at NTT / Interests: neural networks, loss landscape, learning theory

Daiki Chijiwa đã đăng lại

Proof of a perfect platonic representation hypothesis ift.tt/7fv2uVz


Daiki Chijiwa đã đăng lại

Our new paper is out! We show that the functionalities of quantum error correction and quantum teleportation can be interpreted as negative maps for non-Markovian processes by introducing the subsystem frame. We also point out the relations with QEM! arxiv.org/abs/2510.20224


Daiki Chijiwa đã đăng lại

本日、記者会見があり、NTTが研究開発しております「tsuzumi 2」が提供開始になりました🚀 ニュースリリース👉 group.ntt/jp/newsrelease… tsuzumi 2はパラメータ数28.6B・10Tトークン学習の、日本語の理解・生成・指示遂行に強みを持つモデルです。 2025年11月19日から開催される NTT R&D フォーラム…

/ 更なる進化を遂げた #tsuzumi 2 の提供開始📢✨ \ 軽量でありながら高性能な日本語処理性能を持つ LLM「tsuzumi 2」の提供を本日開始しました💫 サイバーセキュリティ分野への応用、自律的に連携し議論する AI コンステレーション等の開発も進めます! #NTTRD



📜Lossless Vocabulary Reduction for LLMs🤖 In this paper, we established a theoretical framework that can flexibly shrink the vocabulary of a given LLM to an arbitrary sub-vocabulary, efficiently in inference-time. 🔗arxiv.org/abs/2510.08102 See the video for a quick overview👇


Daiki Chijiwa đã đăng lại

観測データから混合整数線形計画を復元.目的関数と制約条件の両方を学習する逆最適化手法を提案しました.🚀🚀🚀 📷ぜひご覧ください📷 arxiv.org/abs/2510.04455

akitaoka_en's tweet image. 観測データから混合整数線形計画を復元.目的関数と制約条件の両方を学習する逆最適化手法を提案しました.🚀🚀🚀
📷ぜひご覧ください📷
arxiv.org/abs/2510.04455

Daiki Chijiwa đã đăng lại

先日、NLPコロキウムでお話しさせていただいた動画がアップロードされました。 ご興味がある方はどうぞご覧ください。 内容はICML2025 に採択された Portable Reward Tuning のお話です。

長谷川さんのNLPコロキウムでのトークを公開しています→ 📺youtu.be/hSj7ZK1K4Hc 当日参加できなかったかたもぜひご覧ください! ※ なおQA・ディスカッションは公開しておりません。 またスライドも公開いただきました。あわせてご覧ください → nlp-colloquium-jp.github.io/assets/pdf/202…

nlp_colloquium's tweet image. 長谷川さんのNLPコロキウムでのトークを公開しています→ 📺youtu.be/hSj7ZK1K4Hc
当日参加できなかったかたもぜひご覧ください!
※ なおQA・ディスカッションは公開しておりません。

またスライドも公開いただきました。あわせてご覧ください → nlp-colloquium-jp.github.io/assets/pdf/202…


Daiki Chijiwa đã đăng lại

✨世界初✨ #生成AI のカスタマイズコストを抜本的に低減し、低コスト運用を持続可能にする「ポータブルチューニング」技術を確立しました! 本成果は、7/13~19に開催される機械学習分野における最難関国際会議 #ICML2025 にて発表されます #NTTRD


Daiki Chijiwa đã đăng lại

セキュリティに配慮した #LLM の応答精度向上技術を確立しました 定型的な自動応答においてLLMの応答からの学習用データの漏洩リスクを抑えつつ応答精度向上に活用が期待されます #NTTRD


Daiki Chijiwa đã đăng lại

🚀次回の #NLPコロキウム のお知らせ 講演者: 長谷川拓さん @th_freiburg @dchiji_en (NTT) 日時: 7/9 (水) 12:00–13:00 JST 世界の変化に応じたモデル更新には高いコストが伴います🌏そこで基盤モデルに柔軟に組み合わせて使えるポータブルな報酬モデルを学習するお話です。nlp-colloquium-jp.github.io/schedule/2025-…


Daiki Chijiwa đã đăng lại

🚀 Happy to share our @CVPR paper, which proposes a post-pre-training method for CLIP to mitigate modality gaps and improve zero-shot performance with just 5 minutes of additional training! We are looking forward to discussing with you at our poster session! #CVPR2025

syamaguchi_en's tweet image. 🚀 Happy to share our @CVPR  paper, which proposes a post-pre-training method for CLIP to mitigate modality gaps and improve zero-shot performance with just 5 minutes of additional training! 
We are looking forward to discussing with you at our poster session! #CVPR2025

Daiki Chijiwa đã đăng lại

🎉 Excited to announce our ICML 2025 paper “Portable Reward Tuning: Towards Reusable Fine‑Tuning across Different Pretrained Models,” co‑first‑authored with @dchiji_en 🤝(equal contribution)! #ICML2025 Preprint 👉 arxiv.org/abs/2502.12776

th_freiburg's tweet image. 🎉 Excited to announce our ICML 2025 paper “Portable Reward Tuning: Towards Reusable Fine‑Tuning across Different Pretrained Models,” co‑first‑authored with @dchiji_en 🤝(equal contribution)! #ICML2025 

Preprint 👉 arxiv.org/abs/2502.12776

Daiki Chijiwa đã đăng lại

I'm happy to announce that our paper, "Test-time Adaptation for Regression by Subspace Alignment," will be presented at #ICLR2025 on 4/25! We demonstrate that existing TTA methods for classification struggle with regression and propose an effective method using feature alignment.

syamaguchi_en's tweet image. I'm happy to announce that our paper, "Test-time Adaptation for Regression by Subspace Alignment," will be presented at #ICLR2025 on 4/25! We demonstrate that existing TTA methods for classification struggle with regression and propose an effective method using feature alignment.

Daiki Chijiwa đã đăng lại

We have released the preprint and code for our paper, which has been accepted to #CVPR2025! We propose a simple post-pre-training method called CLIP-Refine to mitigate the modality gap in CLIP. Preprint: arxiv.org/abs/2504.12717 Code: github.com/yshinya6/clip-…


Daiki Chijiwa đã đăng lại

AI is reshaping society and ourselves. We're at the wheel, steering this powerful force. But what future do we envision for a human-AI society, and how can we get there safely? We’ve launched "Physics of AI Group" to explore the Philosophy and Physics of Intelligence.

Hidenori8Tanaka's tweet image. AI is reshaping society and ourselves. We're at the wheel, steering this powerful force.

But what future do we envision for a human-AI society, and how can we get there safely?

We’ve launched "Physics of AI Group" to explore the Philosophy and Physics of Intelligence.

Daiki Chijiwa đã đăng lại

And finally one more open access one: "Transfer learning with pre-trained conditional generative models" by Shin’ya Yamaguchi, Sekitoshi Kanai, Atsutoshi Kumagai, Daiki Chijiwa & Hisashi Kashima (link.springer.com/article/10.100…) #OA


Loading...

Something went wrong.


Something went wrong.