#opticalcomputing search results
Training an LLM whose internal state becomes a printable optical mask. Illuminate this donut and you can reconstruct the semantics and predict the next word. First physical tests happening this week 🔥 #OpticalComputing #Photonics #OpticalGPT #LowPowerAI #SpaceTech #DeepTech
Aalto University researchers develop AI that computes using light waves instead of electricity. Their method executes tensor operations in a single pass of light, enabling calculations to occur naturally & simultaneously. #AI #OpticalComputing #TechBreakthrough
Tsinghua University develops OFE2, an optical AI processor that computes at 12.5 GHz using light instead of electricity. This breakthrough enables AI to literally compute at the speed of light, revolutionizing processing efficiency. #AI #OpticalComputing #TechBreakthrough
#Opticalcomputing is gaining momentum for energy-efficient #AI. New research shows free-space optical processors could shrink to ~1 cm. With new materials and next-gen SLMs, optical hardware is emerging as powerful specialty accelerators. @TechXplore_com: bit.ly/48cG1rm
Photonic AI Coding: Light-speed algorithms run on silicon-photonics chips. Zero electrons, pure photons compute, encrypt & transmit terabits/sec wirelessly. The future is optical. #PhotonAI #LiFi #OpticalComputing
Photonic AI Coding: Light-speed algorithms run on silicon-photonics chips. Zero electrons, pure photons compute, encrypt & transmit terabits/sec wirelessly. The future is optical.  #PhotonAI #LiFi #OpticalComputing (179 chars)
Photonic AI Coding: Light-speed algorithms run on silicon-photonics chips. Zero electrons, pure photons compute, encrypt & transmit terabits/sec wirelessly. The future is optical. #PhotonAI #LiFi #OpticalComputing
Future #Tech with #AI Coding photon #wireless IMAGE FROM @grok x.com/i/grok/share/l…
AI at the speed of light just became a possibility ow.ly/SUhf50XrUAf via @techxplore_com #AI #Photonics #OpticalComputing
A breakthrough for upscaling LLMs at much less energy cost/use, or a doorway to #AI doom? #OpticalComputing livescience.com/technology/com…
Scientists at Aalto University have developed an optical computing chip that uses light to accelerate AI processing—potentially making computations up to 100x faster ... #OpticalComputing #AIinnovation #Photonics #DeepLearning #TechNews aicerts.ai/news/aaltos-op…
Discover the untold story of optical computing! #OpticalComputing #Innov... youtube.com/shorts/hl2KF-k… via @YouTube
youtube.com
YouTube
Discover the untold story of optical computing! #OpticalComputing...
Back from an amazing week at #SC25! Thank you to everyone who visited booth 5415, shared ideas, and explored how our optical LPU brings AI-powered, nanosecond PDE solving to HPC. Great conversations, great community — we’re excited for what’s next. #HPC #OpticalComputing
Researchers have demonstrated a groundbreaking way to perform tensor calculations using light, paving the way for ultra-fast, energy-efficient AI processing ow.ly/kuAh50XrUog via @electronicsnews #AI #Photonics #OpticalComputing
Discover the untold story of optical computing! #OpticalComputing #Innov... youtube.com/shorts/hl2KF-k… via @YouTube
youtube.com
YouTube
Discover the untold story of optical computing! #OpticalComputing...
📢 📰 AI computations at the speed of light? Researchers at Aalto University made it possible with single-shot tensor computing! 🗞 🔔 #AI #Innovation #OpticalComputing #FutureOfTech 🔄 Share 👍 React 🌐 Visit aravind-r.com #AravindRaghunathan
Discover the untold story of optical computing! #OpticalComputing #Innov... youtube.com/shorts/hl2KF-k… via @YouTube
youtube.com
YouTube
Discover the untold story of optical computing! #OpticalComputing...
We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing
AI at the speed of light just became a possibility ow.ly/SUhf50XrUAf via @techxplore_com #AI #Photonics #OpticalComputing
Light-Based AI Computing: A New Era of Speed and Efficiency techlife.blog/posts/a-single… #AI #Photonics #OpticalComputing #Supercomputers
The next tech race isn’t for faster chips — it’s for light itself. Explore how nations are developing #OpticalComputing to power AI, defense, and communication at the speed of photons. 🔗 idstch.com/geopolitics/op… #Photonics #QuantumTech #FutureComputing #IDST
We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing
A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation
An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en
An Editors’ Pick via #OPG_OL: Dammann gratings-based truly parallel optical matrix multiplication accelerator ow.ly/R96E50OaLp7 #OpticalComputing
Fully Homomorphic Encryption (FHE) allows computations to be performed on encrypted data. Optalysys' Echip technology can provide an order-of-magnitude acceleration in FHE calculations. 🤝 Apply to join our FHE Beta program: optalysys.com/fhe-beta-progr… #opticalcomputing #AI
Diffractive interconnects: all-optical permutation operation using diffractive networks #neuralnetworks #opticalcomputing degruyter.com/document/doi/1…
#machinelearning w/ #opticalcomputing speeds #bigdata #processing arxiv.org/pdf/1510.06664…👉@LightOnIO🕯#light provides #insights💡 #RandNLA #AI
Via #OPG_Optica: Hyperspectral in-memory computing with optical frequency combs and programmable optical memories bit.ly/3Y4xDoT #OpticalComputing #MachineLearning
By forcing light to go through a smaller gap than ever before, @imperialcollege researchers have paved the way for computers based on light instead of electronics: ow.ly/z6nW30h0gvo #OpticalComputing #Tech
Via #OPG_OpEx: Spin–orbit optical broadband achromatic spatial differentiation imaging bit.ly/4frP60P #OpticalComputing #ImageProcessing @jnu1906
Via #OPG_OMEx: Optical dendrites for spatio-temporal computing with few-mode fibers [Invited] ow.ly/B6S550JgChn #OpticalComputing #MultimodeFibers @IFISC_mallorca
NEW ARTICLE: Encrypted search using fully homomorphic encryption We explore implementing an encrypted search operation using @zama_fhe Concrete Boolean library and running it with the aid of optical Fourier transform hardware: optalysys.com/encrypted-sear… #AI #opticalcomputing
An Editors' Pick via #OPG_OL: Total absorption and coherent perfect absorption in metal–dielectric–metal resonators integrated into a slab waveguide ow.ly/jm9250KAfSb #PhotonicCrystals #OpticalComputing
Via #OPG_Optica: Realization of an integrated coherent photonic platform for scalable matrix operations ow.ly/kO3f50Rxv4Q #InformationProcessing #OpticalComputing @PittEngineering
Superfast Fluorescence Sets New Speed Record @DukeEngineering bit.ly/1UyNqDb @AFOSRYIP #OpticalComputing
NEW ARTICLE: Optical computing for Computational Fluid Dynamics In this article we aim to provide an illustration of where the field is now, so we can later talk in detail where it might end up in the future. Read it here: bit.ly/3kzTijc #AI #opticalcomputing #CFD
An Editors’ Pick via #OPG_OMEx: Towards “smart transceivers” in FPGA-controlled lithium-niobate-on-insulator integrated circuits for edge computing applications [Invited] ow.ly/AL7I50QkMW0 #OpticalComputing @UniHeidelberg
#OpticalComputing is a technology that uses light waves instead of electrical signals to perform computational tasks. This approach aims to leverage the properties of light for data processing, storage, and communication in computing systems. photonicsonline.com/doc/computing-…
Neural computing with coherent laser networks Read the article that opens new possibilities for neural computation with coherent laser networks as novel analog processors. #machinelearning #neuralnetworks #opticalcomputing degruyter.com/document/doi/1…
Something went wrong.
Something went wrong.
United States Trends
- 1. Mets 35.3K posts
- 2. Diaz 76.7K posts
- 3. Maresca 34.8K posts
- 4. Dodgers 40.7K posts
- 5. Kentucky State University 2,549 posts
- 6. Stearns 11.5K posts
- 7. GeForce Season 3,933 posts
- 8. 2026 MLB Draft 1,225 posts
- 9. Rashford 15.7K posts
- 10. Rivers 87.8K posts
- 11. Alonso 62.1K posts
- 12. Dictionary 8,044 posts
- 13. Schwarber 18.4K posts
- 14. Gittens 6,937 posts
- 15. Atalanta 42.2K posts
- 16. Reds 19.4K posts
- 17. MLB Draft Lottery N/A
- 18. White Sox 2,078 posts
- 19. Soto 15.6K posts
- 20. Kounde 33K posts