#opticalcomputing arama sonuçları

We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing

LightSolverCo's tweet image. We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing

Our co-founder/CTO Chene Tradonsky was honored to present “Harnessing Light: A Physics-Based Computing Paradigm for Simulating Nature” at the Chesapeake Large-Scale #Analytics Conference. Thank you to all who contributed to an inspiring exchange! #CLSAC #opticalcomputing

LightSolverCo's tweet image. Our co-founder/CTO Chene Tradonsky was honored to present “Harnessing Light: A Physics-Based Computing Paradigm for Simulating Nature” at the Chesapeake Large-Scale #Analytics Conference. Thank you to all who contributed to an inspiring exchange!

#CLSAC #opticalcomputing

An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en

OpticaPubsGroup's tweet image. An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en

Analog optical computers use light, lenses, and filters to perform AI operations like matrix multiplication and nonlinearity, offering a different approach to storing and manipulating data compared to traditional computers. #analogcomputing #opticalcomputing


We’re excited to be featured in the latest issue of @TheMarker! LightSolver is redefining computation with our laser-based optical computer, solving complex problems 1,000× faster than classical systems. Read the article at: bit.ly/4hp3QiF #OpticalComputing #HPC


Using light, lenses, and filters, a new computer design can perform matrix multiplication and nonlinearity in a completely analog manner. This could be 100x more efficient than GPUs. #neuralnetworks #opticalcomputing


Microsoft's new analog optical computer is projected to be 100 times more efficient than leading GPUs, potentially disrupting the AI hardware landscape by offering a low-cost, high-efficacy alternative for inference. #AI #opticalcomputing


Microsoft researchers are exploring analog optical computers using LEDs, filters, and CCDs to perform matrix multiplication and non-linearity for AI, potentially bypassing the limitations of digital systems. #AnalogComputing #OpticalComputing


People in the 1900s: Who needs cars if we have horses already and a supply chain to feed them? People in the 2000s: Who needs optical processors if we have electronic chips already and a $1T supply chain to manufacture them? #OpticalComputing #FutureOfComputing

benjaminwolba's tweet image. People in the 1900s: 

Who needs cars if we have horses already and a supply chain to feed them?

People in the 2000s: 

Who needs optical processors if we have electronic chips already and a $1T supply chain to manufacture them?

#OpticalComputing #FutureOfComputing

Our scientists have developed photon-avalanching nanoparticles that exhibit a phenomenon called “intrinsic optical bistability,” which could enable optical memory for #OpticalComputing. newscenter.lbl.gov/2025/02/26/new… @molecularfndry @EmoryChanNano

BerkeleyLab's tweet image. Our scientists have developed photon-avalanching nanoparticles that exhibit a phenomenon called “intrinsic optical bistability,” which could enable optical memory for #OpticalComputing. newscenter.lbl.gov/2025/02/26/new… 

@molecularfndry @EmoryChanNano

Diffractive interconnects: all-optical permutation operation using diffractive networks #neuralnetworks #opticalcomputing degruyter.com/document/doi/1…

Nanophotonics_J's tweet image. Diffractive interconnects: all-optical permutation operation using diffractive networks 

#neuralnetworks
#opticalcomputing

degruyter.com/document/doi/1…

An Editors’ Pick via #OPG_OL: Dammann gratings-based truly parallel optical matrix multiplication accelerator ow.ly/R96E50OaLp7 #OpticalComputing

OpticaPubsGroup's tweet image. An Editors’ Pick via #OPG_OL: Dammann gratings-based truly parallel optical matrix multiplication accelerator ow.ly/R96E50OaLp7 #OpticalComputing

Via #OPG_Optica: Hyperspectral in-memory computing with optical frequency combs and programmable optical memories bit.ly/3Y4xDoT #OpticalComputing #MachineLearning

OpticaPubsGroup's tweet image. Via #OPG_Optica: Hyperspectral in-memory computing with optical frequency combs and programmable optical memories bit.ly/3Y4xDoT #OpticalComputing #MachineLearning

Meet Yoav Blau, our new optical algorithm developer. With a PhD in optical metasurfaces and experience in optics, acoustics, software, and startups, he’ll help expand our laser-based compute platform into new problem spaces. Welcome, Yoav! #Photonics #OpticalComputing

LightSolverCo's tweet image. Meet Yoav Blau, our new optical algorithm developer. With a PhD in optical metasurfaces and experience in optics, acoustics, software, and startups, he’ll help expand our laser-based compute platform into new problem spaces.

Welcome, Yoav! #Photonics #OpticalComputing

Via #OPG_OpEx: Spin–orbit optical broadband achromatic spatial differentiation imaging bit.ly/4frP60P #OpticalComputing #ImageProcessing @jnu1906

OpticaPubsGroup's tweet image. Via #OPG_OpEx: Spin–orbit optical broadband achromatic spatial differentiation imaging bit.ly/4frP60P #OpticalComputing #ImageProcessing @jnu1906

Via #OPG_Optica: Realization of an integrated coherent photonic platform for scalable matrix operations ow.ly/kO3f50Rxv4Q #InformationProcessing #OpticalComputing @PittEngineering

OpticaPubsGroup's tweet image. Via #OPG_Optica: Realization of an integrated coherent photonic platform for scalable matrix operations ow.ly/kO3f50Rxv4Q #InformationProcessing #OpticalComputing @PittEngineering

A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation

AZoOptics's tweet image. A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation

An Editors’ Pick via #OPG_OMEx: Towards “smart transceivers” in FPGA-controlled lithium-niobate-on-insulator integrated circuits for edge computing applications [Invited] ow.ly/AL7I50QkMW0 #OpticalComputing @UniHeidelberg

OpticaPubsGroup's tweet image. An Editors’ Pick via #OPG_OMEx: Towards “smart transceivers” in FPGA-controlled lithium-niobate-on-insulator integrated circuits for edge computing applications [Invited] ow.ly/AL7I50QkMW0 #OpticalComputing @UniHeidelberg

Neural computing with coherent laser networks Read the article that opens new possibilities for neural computation with coherent laser networks as novel analog processors. #machinelearning #neuralnetworks #opticalcomputing degruyter.com/document/doi/1…

Nanophotonics_J's tweet image. Neural computing with coherent laser networks

Read the article that opens new possibilities for neural computation with coherent laser networks as novel analog processors.

#machinelearning
#neuralnetworks
#opticalcomputing

degruyter.com/document/doi/1…

The next tech race isn’t for faster chips — it’s for light itself. Explore how nations are developing #OpticalComputing to power AI, defense, and communication at the speed of photons. 🔗 idstch.com/geopolitics/op… #Photonics #QuantumTech #FutureComputing #IDST


We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing

LightSolverCo's tweet image. We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing

The next tech race isn’t for faster chips — it’s for light itself. Explore how nations are developing #OpticalComputing to power AI, defense, and communication at the speed of photons. 🔗 idstch.com/geopolitics/op… #Photonics #QuantumTech #FutureComputing #IDST


Researchers have demonstrated a groundbreaking way to perform tensor calculations using light, paving the way for ultra-fast, energy-efficient AI processing ow.ly/kuAh50XrUog via @electronicsnews #AI #Photonics #OpticalComputing


🤯 AI Breakthrough! Optical processors are here, using light instead of electricity for faster computation! This could revolutionize AI training speeds. Source: Various research labs. #AI #OpticalComputing


LightSolver is heading to #SC25! Meet our CEO Dr. Ruti Ben-Shlomi at booth #5415 to learn how our Laser Processing Unit (LPU) physically models and solves partial differential equations (PDEs) with light, at nanosecond speeds. #OpticalComputing #HPC #LightSolver @Supercomputing

LightSolverCo's tweet image. LightSolver is heading to #SC25!

Meet our CEO Dr. Ruti Ben-Shlomi at booth #5415 to learn how our Laser Processing Unit (LPU) physically models and solves partial differential equations (PDEs) with light, at nanosecond speeds.

#OpticalComputing #HPC #LightSolver @Supercomputing

When Light Starts To Think: A Journey Into #OpticalComputing by Pooja Kashyap ai.gopubby.com/when-light-sta…

HWillert's tweet image. When Light Starts To Think: A Journey Into #OpticalComputing by Pooja Kashyap ai.gopubby.com/when-light-sta…

सिंघुआ विश्वविद्यालय ने 12.5 GHz प्रकाश-संचालित AI चिप बनाई | Tsinghua University Creates Light-Powered AI Chip Operating at Record 12.5 GHz #2YoDoINDIA #AI #OpticalComputing #Photonics #TsinghuaUniversity #Chips #EnergyEfficiency #TechnologyInnovation

2yodoindia's tweet image. सिंघुआ विश्वविद्यालय ने 12.5 GHz प्रकाश-संचालित AI चिप बनाई | Tsinghua University Creates Light-Powered AI Chip Operating at Record 12.5 GHz

#2YoDoINDIA #AI #OpticalComputing #Photonics #TsinghuaUniversity #Chips #EnergyEfficiency #TechnologyInnovation

⚡️ Algorithm development is no longer just for humans! AI is now capable of inventing algorithms that outperform human-devised methods. 🤯 A new optical engine, OFE2, uses light for unprecedented speed! #AIAlgorithms #OpticalComputing #Efficiency


🤯 AI is making HUGE leaps! Tsinghua University's Optical Feature Extraction Engine (OFE2) uses light to process data at 12.5 GHz! 🚀 Faster AI? Yes, please! Imaging & trading apps are about to get a serious boost. #AI #OpticalComputing


We’re excited to be featured in the latest issue of @TheMarker! LightSolver is redefining computation with our laser-based optical computer, solving complex problems 1,000× faster than classical systems. Read the article at: bit.ly/4hp3QiF #OpticalComputing #HPC


A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation

AZoOptics's tweet image. A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation

🤯 Optical computing is HERE! Tsinghua University's OFE2 uses light to process data at 12.5 GHz! ⚡️ Faster, more efficient AI is on the horizon. Imagine the possibilities! #AI #OpticalComputing #Innovation


Our co-founder/CTO Chene Tradonsky was honored to present “Harnessing Light: A Physics-Based Computing Paradigm for Simulating Nature” at the Chesapeake Large-Scale #Analytics Conference. Thank you to all who contributed to an inspiring exchange! #CLSAC #opticalcomputing

LightSolverCo's tweet image. Our co-founder/CTO Chene Tradonsky was honored to present “Harnessing Light: A Physics-Based Computing Paradigm for Simulating Nature” at the Chesapeake Large-Scale #Analytics Conference. Thank you to all who contributed to an inspiring exchange!

#CLSAC #opticalcomputing

Light is no longer a passive messenger — it’s becoming the medium and the processor. Discover how advanced materials are enabling nonlinear photonics on chip: 🎥 youtu.be/9In9AkapJ9g #Photonics #OpticalComputing #QuantumTech

idstch's tweet card. Materials for Nonlinear Integrated Photonics Building the Future of...

youtube.com

YouTube

Materials for Nonlinear Integrated Photonics Building the Future of...


From 5G to quantum entanglement, LiNbO₃ devices enable light-based data at blazing rates — with lower energy and higher fidelity. Watch how: youtu.be/dnMUdimQ0aw #OpticalComputing #QuantumNetworks

idstch's tweet card. Lithium Niobate The Silicon of Photonics Powering the Next Quantum...

youtube.com

YouTube

Lithium Niobate The Silicon of Photonics Powering the Next Quantum...


An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en

OpticaPubsGroup's tweet image. An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en

"#opticalcomputing" için sonuç bulunamadı

An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en

OpticaPubsGroup's tweet image. An Editors' Pick via #OPG_JOSA_B: Sub-quadratic scalable approximate linear converter using multi-plane light conversion with low-entropy mode mixers bit.ly/47bHflZ #OpticalComputing #LinearConverter #MultiPlaneLightConversion @UTokyo_News_en

A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation

AZoOptics's tweet image. A new optical chip smashes latency records in feature extraction for AI and trading - processing data at the speed of light!⚡️Discover how photonics could outpace electronics: azooptics.com/News.aspx?news… #OpticalComputing #AI #TechInnovation

We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing

LightSolverCo's tweet image. We’re live at @Supercomputing #SC25! Stop by booth 5415 to meet the LightSolver team and learn how our all-optical LPU solves partial differential equations (PDEs) in nanoseconds. This holds great promise for the future of scientific modeling & simulation. #HPC #OpticalComputing

Fully Homomorphic Encryption (FHE) allows computations to be performed on encrypted data. Optalysys' Echip technology can provide an order-of-magnitude acceleration in FHE calculations. 🤝 Apply to join our FHE Beta program: optalysys.com/fhe-beta-progr… #opticalcomputing #AI

Optalysys's tweet image. Fully Homomorphic Encryption (FHE) allows computations to be performed on encrypted data.

Optalysys' Echip technology can provide an order-of-magnitude acceleration in FHE calculations.

🤝 Apply to join our FHE Beta program:  optalysys.com/fhe-beta-progr… 

#opticalcomputing #AI

NEW ARTICLE: Encrypted search using fully homomorphic encryption We explore implementing an encrypted search operation using @zama_fhe Concrete Boolean library and running it with the aid of optical Fourier transform hardware: optalysys.com/encrypted-sear… #AI #opticalcomputing

Optalysys's tweet image. NEW ARTICLE: Encrypted search using fully homomorphic encryption

We explore implementing an encrypted search operation using @zama_fhe Concrete Boolean library and running it with the aid of optical Fourier transform hardware:

optalysys.com/encrypted-sear…

#AI #opticalcomputing

NEW ARTICLE: Optical computing for Computational Fluid Dynamics In this article we aim to provide an illustration of where the field is now, so we can later talk in detail where it might end up in the future. Read it here: bit.ly/3kzTijc #AI #opticalcomputing #CFD

Optalysys's tweet image. NEW ARTICLE: Optical computing for Computational Fluid Dynamics

In this article we aim to provide an illustration of where the field is now, so we can later talk in detail where it might end up in the future.

Read it here: bit.ly/3kzTijc

#AI #opticalcomputing #CFD

An Editors’ Pick via #OPG_OL: Dammann gratings-based truly parallel optical matrix multiplication accelerator ow.ly/R96E50OaLp7 #OpticalComputing

OpticaPubsGroup's tweet image. An Editors’ Pick via #OPG_OL: Dammann gratings-based truly parallel optical matrix multiplication accelerator ow.ly/R96E50OaLp7 #OpticalComputing

Via #OPG_Optica: Hyperspectral in-memory computing with optical frequency combs and programmable optical memories bit.ly/3Y4xDoT #OpticalComputing #MachineLearning

OpticaPubsGroup's tweet image. Via #OPG_Optica: Hyperspectral in-memory computing with optical frequency combs and programmable optical memories bit.ly/3Y4xDoT #OpticalComputing #MachineLearning

By forcing light to go through a smaller gap than ever before, @imperialcollege researchers have paved the way for computers based on light instead of electronics: ow.ly/z6nW30h0gvo #OpticalComputing #Tech

LBNLcs's tweet image. By forcing light to go through a smaller gap than ever before, @imperialcollege  researchers have paved the way for computers based on light instead of electronics: ow.ly/z6nW30h0gvo #OpticalComputing #Tech

Diffractive interconnects: all-optical permutation operation using diffractive networks #neuralnetworks #opticalcomputing degruyter.com/document/doi/1…

Nanophotonics_J's tweet image. Diffractive interconnects: all-optical permutation operation using diffractive networks 

#neuralnetworks
#opticalcomputing

degruyter.com/document/doi/1…

Need to punch some numbers? Thanks to Aalto research, we now have nanostructures that can use light—instead of electricity—to perform logic functions, like simple addition and subtraction. aalto.fi/en/current/new… #nanotechnology #opticalcomputing @ZhipeiSun

AaltoUniversity's tweet image. Need to punch some numbers? Thanks to Aalto research, we now have  nanostructures that can use light—instead of electricity—to perform logic functions, like simple addition and subtraction. aalto.fi/en/current/new…  #nanotechnology #opticalcomputing @ZhipeiSun

NEW ARTICLE: Higher numerical precision for optical Fourier transforms How we can use a physical Fourier transform of a given size and shape to compute arbitrary digital transforms? 📖Read the article here: bit.ly/3jmNWZK #AI #opticalcomputing

Optalysys's tweet image. NEW ARTICLE: Higher numerical precision for optical Fourier transforms

How we can use a physical Fourier transform of a given size and shape to compute arbitrary digital transforms?

📖Read the article here: bit.ly/3jmNWZK

#AI #opticalcomputing

NEW ARTICLE: Optalysys: What we do (And why we do it) Conventional computing is rapidly approaching the physical limits of what can be achieved with silicon electronics... Continue reading: optalysys.com/what-we-do-and… #optalysys #opticalcomputing #AI #fouriertransform

Optalysys's tweet image. NEW ARTICLE: Optalysys: What we do (And why we do it)

Conventional computing is rapidly approaching the physical limits of what can be achieved with silicon electronics...

Continue reading: optalysys.com/what-we-do-and…

#optalysys #opticalcomputing #AI #fouriertransform

Via #OPG_OMEx: Optical dendrites for spatio-temporal computing with few-mode fibers [Invited] ow.ly/B6S550JgChn #OpticalComputing #MultimodeFibers @IFISC_mallorca

OpticaPubsGroup's tweet image. Via #OPG_OMEx: Optical dendrites for spatio-temporal computing with few-mode fibers [Invited] ow.ly/B6S550JgChn #OpticalComputing #MultimodeFibers  @IFISC_mallorca

Via #OPG_OpEx: Spin–orbit optical broadband achromatic spatial differentiation imaging bit.ly/4frP60P #OpticalComputing #ImageProcessing @jnu1906

OpticaPubsGroup's tweet image. Via #OPG_OpEx: Spin–orbit optical broadband achromatic spatial differentiation imaging bit.ly/4frP60P #OpticalComputing #ImageProcessing @jnu1906

Via #OPG_Optica: Realization of an integrated coherent photonic platform for scalable matrix operations ow.ly/kO3f50Rxv4Q #InformationProcessing #OpticalComputing @PittEngineering

OpticaPubsGroup's tweet image. Via #OPG_Optica: Realization of an integrated coherent photonic platform for scalable matrix operations ow.ly/kO3f50Rxv4Q #InformationProcessing #OpticalComputing @PittEngineering

The Optalysys E-Chip: harnesses the natural energy of light to deliver unrivalled performance and efficiency for global computing demands. Engage with us: optalysys.com #AI #opticalcomputing #nextgencomputing #opticalprocessing #lightspeed

Optalysys's tweet image. The Optalysys E-Chip: harnesses the natural energy of light to deliver unrivalled performance and efficiency for global computing demands.

Engage with us: optalysys.com

#AI  #opticalcomputing #nextgencomputing #opticalprocessing #lightspeed

Loading...

Something went wrong.


Something went wrong.


United States Trends