
Elena Chen
@codingboo
Learning Data Science and Data Analytics!
You might like
#Day15 of #DataAnalytics #Seaborns Place data in matrix form by .pivot_table() .heatmap to plot data in color-encoded matrices. annot=True for annotation of the values to be presented on the grid. cmap to change color variation VS .clustermap data grouped based on similarity



#Day14 of #DataAnalytics #Seaborns kdeplot - kernel density estimation. Idea is to replace each data point (represented by dashmark in rugplot) with a small Gaussian (Normal) distribution centered around that value, then summing the Gaussians for smooth estimate of the distributi


#Day11 of #DataAnalytics I'm struggling with #Matplotlib because my kernel keeps restarting/dying whenever I try to import matplotlib... this was the same problem I faced the previous time when I was learning this too...
#Day10 of #DataAnalytics Started #Matplotlib visualization tool for Python! View: matplotlib.org/2.0.2/gallery.… to see the whole list of figures that can be done + source code (eg statistical plots & scientific figures) import matplotlib.pyplot as plt %matplotlib inline plt.plot()

#Day9 of #DataAnalytics Finished a last section of learning #Pandas, and did extracting data with: - str.contain(' ', case=False) to make it case-insensitive - .head(n) to get the first n rows, usually paired with .value_counts - len(df[’col2’].unique()) / df[’col2’].nunique()
![codingboo's tweet image. #Day9 of #DataAnalytics
Finished a last section of learning #Pandas, and did extracting data with:
- str.contain(' ', case=False) to make it case-insensitive
- .head(n) to get the first n rows, usually paired with .value_counts
- len(df[’col2’].unique()) / df[’col2’].nunique()](https://pbs.twimg.com/media/FuoEbn2acAE6kQm.jpg)
![codingboo's tweet image. #Day9 of #DataAnalytics
Finished a last section of learning #Pandas, and did extracting data with:
- str.contain(' ', case=False) to make it case-insensitive
- .head(n) to get the first n rows, usually paired with .value_counts
- len(df[’col2’].unique()) / df[’col2’].nunique()](https://pbs.twimg.com/media/FuoEbnuaMAMeThE.jpg)
![codingboo's tweet image. #Day9 of #DataAnalytics
Finished a last section of learning #Pandas, and did extracting data with:
- str.contain(' ', case=False) to make it case-insensitive
- .head(n) to get the first n rows, usually paired with .value_counts
- len(df[’col2’].unique()) / df[’col2’].nunique()](https://pbs.twimg.com/media/FuoEbnzaYAI1XYz.jpg)
![codingboo's tweet image. #Day9 of #DataAnalytics
Finished a last section of learning #Pandas, and did extracting data with:
- str.contain(' ', case=False) to make it case-insensitive
- .head(n) to get the first n rows, usually paired with .value_counts
- len(df[’col2’].unique()) / df[’col2’].nunique()](https://pbs.twimg.com/media/FuoEbn0acAE8lwX.jpg)
United States Trends
- 1. Wemby 102K posts
- 2. Spurs 56.8K posts
- 3. Talus Labs 16K posts
- 4. #QueenRadio 23.6K posts
- 5. Cooper Flagg 14.3K posts
- 6. Victor Wembanyama 37.3K posts
- 7. Clippers 12.1K posts
- 8. Mavs 19.8K posts
- 9. Anthony Edwards 7,573 posts
- 10. Downstairs 4,937 posts
- 11. Dillon Brooks 1,489 posts
- 12. Anthony Davis 8,090 posts
- 13. #PorVida 2,743 posts
- 14. Klay 8,456 posts
- 15. Suns 16.9K posts
- 16. #INDvsAUS 34.2K posts
- 17. Maxey 12.5K posts
- 18. Jazz 23.8K posts
- 19. Embiid 14.9K posts
- 20. Sixers 26.3K posts
You might like
-
Joshua Paul Granger (aka Nicholas Grant/WBJ)
@NickyG6082 -
ترینیتی مناطق جنگ زده
@mahshid2410 -
Ehsan.K
@Ehsank84 -
Wuby dev
@8koi2 -
𝗇𝗂𝖿𝖿𝖾
@R_Lem -
Christopher Sanchez
@Darkus0 -
Bryan Thomas
@KayWhyBT -
オージン・テイク@銭湯民族P
@yasai_Ozin_VXP -
on-chain sis 💻💻💻
@dat_Godwoman -
Uchiha I.
@helloworld_dev -
Sotic
@bominouca -
Mete
@karasakalmt -
Claratin
@Claria92233928 -
Fatima Rauf
@fatimarauf45 -
Philippe Martin
@PhyByte
Something went wrong.
Something went wrong.